Investigating on Incorporating Pretrained and Learnable Speaker Representations for Multi-Speaker Multi-Style Text-to-Speech

Chung-Ming Chien, Jheng-Hao Lin*, Chien-yu Huang*, Po-chun Hsu* and Hung-yi Lee

College of Electrical Engineering and Computer Science, National Taiwan University

IEEE ICASSP 2021

* These authors contributed equally.

Outline

- Task Description
- Background & Motivation
- Methodology
- Experiments
- Conclusion

Task Description

Multi-Speaker Multi-Style Voice Cloning

Multi-Speaker Multi-Style Voice Cloning

Multi-Speaker Multi-Style Voice Cloning

Challenge

- Extract speaker and style information from limited references
- Enable the TTS system to generalize to different speakers/styles

Background & Motivation

Learnable

- Embedding Table
- Trainable Speaker Encoder

Pretrained

Pretrained Speaker Encoder

Learnable Speaker Representation

"Deep voice 3: Scaling text-to-speech with convolutional sequence learning", Ping, et. al, ICLR'18

Learnable Speaker Representation

"Deep voice 3: Scaling text-to-speech with convolutional sequence learning", Ping, et. al, ICLR'18

Learnable Speaker Representation

"Neural voice cloning with a few samples", Arik, et. al, NeurIPS'18 "Sample efficient adaptive text-to-speech", Chen, et. al, ICLR'19

Learnable Speaker Representation

"Neural voice cloning with a few samples", Arik, et. al, NeurIPS'18 "Sample efficient adaptive text-to-speech", Chen, et. al, ICLR'19

Pretrained Speaker Representation

Pretrained Speaker Representation

"Transfer learning from speaker verification to multi-speaker text-to-speech synthesis", Jia, et. al, NeurIPS'18 "Zero-shot multi-speaker text-to-speech with state-of-the-art neural speaker embeddings", Cooper, et. al, ICASSP'20

Pretrained Speaker Representation

"Transfer learning from speaker verification to multi-speaker text-to-speech synthesis", Jia, et. al, NeurIPS'18 "Zero-shot multi-speaker text-to-speech with state-of-the-art neural speaker embeddings", Cooper, et. al, ICASSP'20

Pretrained Speaker Representation

"Transfer learning from speaker verification to multi-speaker text-to-speech synthesis", Jia, et. al, NeurIPS'18 "Zero-shot multi-speaker text-to-speech with state-of-the-art neural speaker embeddings", Cooper, et. al, ICASSP'20

Motivation: Combining Different Representations

Learnable

- Embedding Table
- Trainable Speaker Encoder

Pretrained

Pretrained Speaker Encoder

Motivation: Combining Different Representations

Motivation: Different Pretraining Tasks

- D-vector
- X-vector
- •

Discriminative Pretraining Tasks e.g. speaker classification

Motivation: Different Pretraining Tasks

- D-vector
- X-vector
- •

VS

Discriminative Pretraining Tasks e.g. speaker classification

Generative Pretraining Tasks?

Methodology

Workflow

Speaker Representation Pretraining

TTS Training

TTS Inference

Discriminative Tasks: D-vec & X-vec

Discriminative Tasks: D-vec & X-vec

Generative Tasks: AdaIN-VC (One-Shot)

"One-Shot Voice Conversion by Separating Speaker and Content Representations with Instance Normalization",
Chou, et. al, InterSpeech'19

Generative Tasks: AdaIN-VC (One-Shot)

"One-Shot Voice Conversion by Separating Speaker and Content Representations with Instance Normalization", Chou, et. al, InterSpeech'19

TTS Training

TTS Training

Optional Path

Necessary Path

TTS Training **Optional Path Necessary Path** Trainable Global-Style Token (GST) Speaker Encoder **Ground-Truth** Pretrained Speaker Encoder **Speaker Representations** Fixed during this stage Computer talks. TTS System **Synthesized Speech Text**

[&]quot;"Style tokens: Unsupervised style modeling, control and transfer in end-to-end speech synthesis", Wang, et. al, ICML'18

TTS Training **Necessary Path** Trainable Speaker Encoder **Speaker ID Ground-Truth** Pretrained Speaker Encoder **Speaker Representations Embedding Table** Fixed during this stage Computer talks. TTS System **Synthesized Speech Text**

Optional Path

TTS Inference

Experiments

Dataset

- Training: 96 hours of Mandarin speech by 230 speakers with transcriptions
 - AlShell-3
 - M2VoC dataset

Dataset

- Training: 96 hours of Mandarin speech by 230 speakers with transcriptions
 - AlShell-3
 - M2VoC dataset
- 6 few-shot target speakers
 - Track 1: 3 speakers with 100 recordings
 - Track 2: 3 speakers with 5 recordings

Dataset

- Training: 96 hours of Mandarin speech by 230 speakers with transcriptions
 - AIShell-3
 - M2VoC dataset
- 6 few-shot target speakers
 - Track 1: 3 speakers with 100 recordings
 - Track 2: 3 speakers with 5 recordings
- The few shot speakers are also used to train the speaker representation models and the TTS models

TTS Model Setup

- Tacotron 2 & FastSpeech 2
 - Speaker representations are added to encoder outputs
- WaveNet vocoder

Speaker Verification Accuracy

Scale: 0 ~ 1, the larger the better

Metrics

Speaker Verification Accuracy

Scale: 0 ~ 1, the larger the better

Model	Speaker Repr Pretrained			esentation Learnable		Results SV Accuracy	
	d-vec	x-vec	VC	embed	GST	Track 1	Track 2
	√					.772	.367
		✓				.785	.377
(a) Tacotron 2			✓			.942	.727
				✓		.630	.703
					✓	.102	.050
	√					.977	.323
(b) FastSpeech2		\checkmark				.973	.623
			√			.980	.837
				✓		.988	.490
					\	.778	.340

Generative Pretraining > Others

Metrics

Speaker Verification Accuracy

Scale: 0 ~ 1, the larger the better

Model	Speaker Representation Pretrained			esentation Learnable		Results SV Accuracy	
	d-vec	x-vec	VC	embed	GST	Track 1	Track 2
	✓					.772	.367
		✓				.785	.377
(a) Tacotron 2			✓			.942	.727
				✓		.630	.703
					✓	.102	.050
	√					.977	.323
(b) FastSpeech2		\checkmark				.973	.623
			✓			.980	.837
				√		.988	.490
					\	.778	.340

Audio samples (Track 2, 5 references)

Target Speaker	
d-vec	
x-vec	
VC	
embed	
GST	

Metrics

Speaker Verification Accuracy

Scale: 0 ~ 1, the larger the better

(a) d-vector

(b) x-vector

(c) VC

Metrics

Speaker Verification Accuracy

Scale: 0 ~ 1, the larger the better

More Continuous

(a) d-vector

(b) x-vector

(c) VC

Metrics

Speaker Verification Accuracy

Scale: 0 ~ 1, the larger the better

Model	Speaker Representation Pretrained			esentation Learnable		Results SV Accuracy	
	d-vec	x-vec	VC	embed	GST	Track 1	Track 2
(b) FastSpeech2	0		✓			.980	.837
(c) FastSpeech2	✓	,	\			.978	.747
		V	V	✓		.992 .983	.860 .937
	531		\checkmark		\checkmark	.982	.783
			✓	✓	√	.988	.897
	\checkmark	\checkmark	√	✓	\checkmark	.990	.887

^{*} The colored row is the model used for the final submission to the ICASSP 2021 M2VoC challenge. Due to the time limitation, we did not submit our best model.

Multiple speaker representations

Track 1 (100 references):
No obvious difference

Metrics

Speaker Verification Accuracy

Scale: 0 ~ 1, the larger the better

Model	Speaker Representation Pretrained			esentation Learnable		Results SV Accuracy	
	d-vec	x-vec	VC	embed	GST	Track 1	Track 2
(b) FastSpeech2	Q.		✓			.980	.837
(c) FastSpeech2	√		√			.978	.747
		✓	1			.992	.860
			√	✓		.983	.937
			\checkmark		\checkmark	.982	.783
			√	✓	V	.988	.897
	✓	✓	√	✓	✓	.990	.887

^{*} The colored row is the model used for the final submission to the ICASSP 2021 M2VoC challenge. Due to the time limitation, we did not submit our best model.

Multiple speaker representations

Track 1 (100 references):
No obvious difference

Track 2 (5 references):

Multiple Representations >
Single Representation

Subjective Evaluation (FastSpeech 2, Track 2)

Metrics

Quality MOS

Speaker Similarity MOS

Scale: 1 ~ 5, the larger the better

Subjective Evaluation (FastSpeech 2, Track 2)

Metrics

Quality MOS

Speaker Similarity MOS

Scale: 1 ~ 5, the larger the better

Model		Speaker Representation						
1/10401	x-vec	VC	Embed	VC+Embed				
MOSquality				$3.55 \pm .12$				
MOSsimilarity	$3.25 \pm .13$	$3.19 \pm .14$	$3.27 \pm .13$	$3.38 \pm .14$				

Speaker Similarity: Multiple Representations > Single Representation

Subjective Evaluation (FastSpeech 2, Track 2)

Metrics

Quality MOS

Speaker Similarity MOS

Scale: 1 ~ 5, the larger the better

Model		presentation	l		
1/10401	x-vec	VC	Embed	VC+Embed	
MOSquality	$3.47 \pm .13$	$3.61 \pm .13$	3.65 ± .13	$3.55 \pm .12$	
MOSsimilarity	$3.25 \pm .13$	$3.19 \pm .14$	$3.27 \pm .13$	3.38 ± .14	

Audio samples (Track 2, 5 references)

Official Evaluation Results

Fig. 3: The official subjective evaluation results of Track 2.

Conclusion

Conclusion

 Pretrained speaker representation + learnable speaker representations > single representation

Conclusion

- Pretrained speaker representation + learnable speaker representations > single representation
- Generative pretraining > discriminative pretraining

Resources

- Audio Samples: https://ming024.github.io/M2VoC/
- Code: https://github.com/ming024/FastSpeech2/tree/M2VoC
- Paper: https://arxiv.org/abs/2103.04088