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* We use speech-text models for few-shot & zero-shot Spoken Language
Under-standing (SLU).

- Match the performance of previous models with 0-20% of speech data.
 We analyze pre-trained & fine-tuned speech-text models.
- Explain the zero-shot text-to-speech transferability of speech-text models.

- Suggest fine-tuning with bottom layers frozen, which improves zero-shot
performance.



Background: Speech-Text Pre-Trained Models




Background: Speech-Text Pre-Trained Models

e Models studied:
- SpeechLM ]
- SpeechUT [2]

[1] Z. Zhang, et al, “SpeechLM: Enhanced speech pre-training with unpaired textual data,” preprint arXiv:2209.15329, 2023.
[2] Z. Zhang, et al, “SpeechUT: Bridging speech and text with hidden-unit for encoder-decoder based speech-text pre-training,” in EMNLP, 2022.
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Experimental Setups

e SLU tasks: SLUE Benchmark [3]
- Sentiment Analysis (SA)

> Classification: “positive,” “neutral,” or “negative” sentiments
- Named Entity Recognition (NER)

> Sequence labeling

o Speech-text models fine-tuned with labeled text data + different amounts of labeled
speech data

* Other details follow the default setup of the SLUE benchmark

[3] S. Shon, et al, “SLUE: New benchmark tasks for spoken language understanding evaluation on natural speech,” in ICASSP, 2022.
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 We analyze pre-trained & fine-tuned speech-text models.
- Explain the zero-shot text-to-speech transferability of speech-text models.

- Suggest fine-tuning with bottom layers frozen, which improves zero-shot
performance.
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Analysis Method: Average Neuron-Wise Correlation

» Average Neuron Wise Correlation (ANC) [4] corr(X;, Y;): how much pre-trained
and fine-tuned models differ.
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Top Layers Are Task Specific
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Top Layers Are Task Specific

 \We compare

- Models fine-tuned on the same
task with different input modalities.

- Models fine-tuned on different
tasks with the same input modality.

* During fine-tuning, the task makes a
larger difference than the input mo-
daily to top layers.
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Inspired By the Analysis...

 Bottom layers align speech & text representations.
- Should not be affected by fine-tuning.

* Jop layers are task specific.
- Should be fine-tuned.

 How about fine-tuning only top layers and keeping bottom layers frozen?



Fine-Tuning with Bottom Layers Frozen
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Fine-Tuning with Bottom Layers Frozen

* All-speech & few-shot: slight performance reduction.
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Fine-Tuning with Bottom Layers Frozen

* All-speech & few-shot: slight performance reduction.

e Zero-shot: significant improvements in text-to-speech transferability.

F scores for NER with varying number of frozen layers during fine-tuning
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Conclusion

« Speech-text models for few-shot SLU.
- Speech-text models exhibit zero-shot transferability from text to speech.

- Few-shot performance matches previous work trained with only 20% of
speech data.

» Analysis of speech-text models.
- Bottom layers are task-agnostic and top layers are task-specific.

- Freezing bottom layers enhances zero-shot performance.



