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Experimental Setups

• SLU tasks: SLUE Benchmark [3]


- Sentiment Analysis (SA)


‣ Classification: “positive,” “neutral,” or “negative” sentiments


- Named Entity Recognition (NER)


‣ Sequence labeling


• Speech-text models fine-tuned with labeled text data + different amounts of labeled 
speech data


• Other details follow the default setup of the SLUE benchmark
[3] S. Shon, et al, “SLUE: New benchmark tasks for spoken language understanding evaluation on natural speech,” in ICASSP, 2022.
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ANC scores between speech and text representations 

in pre-trained and fine-tuned models 

• Speech-text models learn aligned 
speech & text representations in bot- 
tom layers.

• Pre-trained & fine-tuned models are 
similar in bottom layers and differ more 
in top layers.

- Fine-tuning affects top layers more.
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Top Layers Are Task Specific

• We compare

- Models fine-tuned on the same  
task with different input modalities.

- Models fine-tuned on different  
tasks with the same input modality.

• During fine-tuning, the task makes a 
larger difference than the input mo- 
daily to top layers. 
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• Bottom layers align speech & text representations.

- Should not be affected by fine-tuning.

• Top layers are task specific.

- Should be fine-tuned.

• How about fine-tuning only top layers and keeping bottom layers frozen?
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Fine-Tuning with Bottom Layers Frozen

• All-speech & few-shot: slight performance reduction.

• Zero-shot: significant improvements in text-to-speech transferability.

 scores for NER with varying number of frozen layers during fine-tuningF1



Conclusion

• Speech-text models for few-shot SLU.

- Speech-text models exhibit zero-shot transferability from text to speech.

- Few-shot performance matches previous work trained with only 20% of 
speech data.

• Analysis of speech-text models.

- Bottom layers are task-agnostic and top layers are task-specific.

- Freezing bottom layers enhances zero-shot performance.


